Reg. No. :

Question Paper Code : X 20446

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020 Fourth Semester Electronics and Communication Engineering EC 6404 – LINEAR INTEGRATED CIRCUITS (Common to Medical Electronics Engineering/Robotics and Automation Engineering) (Regulations 2013) (Also Common to PTEC 6404 – Linear Integrated Circuits for B.E. (Part – Time) Third Semester – Electronics and Communication Engineering – Regulations 2014)

Time : Three Hours

Maximum : 100 Marks

Answer ALL questions

PART – A

(10×2=20 Marks)

- 1. Under what conditions is an operational amplifier said to be an ideal operational amplifier.
- 2. Define slew rate.
- 3. State the advantages of using a Schmitt trigger in an electric circuit.
- 4. Given a bandpass filter with resonant frequency 1200 Hz and bandwidth of 2400 Hz, find its higher cut-off frequency.
- 5. Mention the various applications of PLL.
- 6. Why is capture-range always smaller than lock-range ?
- 7. In what way is the R-2R Ladder type D/A converter better than a weighted resistor type converter ? Do and justify based on their applicability.
- 8. How are over-sampling A/D converters employed for real-time applications ?
- 9. State the reason for connecting a capacitor at the input and the output side of an IC voltage regulator.
- 10. Draw the circuit diagram of an opto-coupler.

11. a) With suitable diagram, explain the AC performance open-loop gain characteristics of an operational amplifier. (13)

(OR)

- b) Briefly describe the operating principle of BJT differential amplifier with active load along with a neat sketch. (13)
- 12. a) i) Design a second and a fourth order low-pass Butterworth filters with a cut off frequency of 10 kHz and unity gain at low frequency. Determine the magnitude of the voltage transfer function in dB at 12 kHz for these filters.
 - ii) Design a differentiator using Op-amp to differentiate an input signal with $f_{max} = 120$ kHz and also draw the output waveform for a sine-wave and square-wave input of 3 V peak at 240 Hz. (5)

(OR)

	b)	i)	Discuss any two applications of operational amplifier as non-linear circuit.	(6)
		ii)	With neat diagram explain the principle of operation of an instrumentation amplifier. List the various applications of instrumentation amplifier.	(7)
13.	a)	i)	With neat diagram, explain the operation of variable trans-conductance amplifier with floating and grounded load model.	(5)
		ii)	For PLL 565, given the free-running frequency as 110 kHz, the demodulation capacitor of 4 μF and supply voltage is ±9 V, determine the lock and capture frequencies and identify the component values.	(8)
			(OR)	
	b)	i)	Derive the expression for capture range of Phase Locked Loop.	(8)
		ii)	Explain the application of PLL as frequency synthesizer.	(5)
14.	a)	i)	Explain in detail about R-2R ladder type D/A Converter.	(7)
		ii)	With neat diagram, explain the operating principle and characteristics of dual slope A/D converter.	(6)
			(OR)	
	b)	i)	Explain the flash type Analog/Digital converter.	(6)
		ii)	Explain the operation of a Sample-and-Hold circuit with a suitable block diagram. List the various factors that contribute to hold mode droop in this circuit.	(7)

15.	a) i)	Explain in detail on the short circuit protection provided in IC 723 Voltage Regulator.	(5)
	ii)	Discuss the fundamental operating concept of video amplifiers and isolation	

amplifiers. (8)

(OR)

- b) i) Design an astable multivibrator using 555 timer for a frequency of 1.26 kHz and duty cycles of 55% and 72%. Assume C = 0.18μ F. (8)
 - ii) Draw the operational circuit of IC 555 timer and mention its various applications. (5)

PART – C (1×15=15 Marks)

- 16. a) With necessary diagrams, explain the following applications of operational amplifier.
 - i) Subtractor
 - ii) Comparator
 - iii) Clamper
 - iv) Anti-logarithmic amplifier
 - v) Peak detector.

(OR)

- b) Discuss in detail on the following waveform generators :
 - i) ICL 8038 function generator
 - ii) Sine-wave generators
 - iii) Triangular wave generator.

(15)

(15)